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1. Introduction

1.1. General Background

America has a unique and convoluted healthcare system compared to other developed nations.
One key difference is the prevalence of private insurance companies that have relatively lax
government oversight. Although the U.S. spends close to $4 trillion on healthcare costs [1],
patients still face many challenges when trying to access care such as an inability to access
preventative services and having to pay an abundant amount of money for basic treatments.

The dataset used in this analysis contains the medical expenses of an individual, along with other
identifying factors. The individuals are adults ages 18 to 64, where subjects above 64 were not
included as they are typically covered by the government. Along with an age and charges, the
person’s sex, BMI, region of residence, number of children/dependents covered in their plan, and
smoking status is included. It is important to note that the charges describe the yearly medical
costs accrued by the recipient and any dependents before insurance coverage.

Private insurance companies seek to maximize their profits by making more in premiums than it
loses in covering patient medical charges. Finding relationships between what types of
individuals are more likely to be costly to the insurance companies can be used to adjust
insurance fees based on such factors.

1.2. Goals

The goal of our project is to use patient data to predict the average medical care expenses for such
population segments among different ages, regions, and other factors. These estimates could be
used to create actuarial tables that set the price of yearly premiums higher or lower according to
the expected treatment costs.

We want to find relationships among various personal factors to answer a variety of different
questions. We want to (1) determine how much weight each field has on individual charges and
(2) find correlations between variables. Finding any relationship - or lack thereof - among these
factors may provide valuable insights into which individuals are most costly and burdensome to
the insurance company.

1.3. Discussion of Interesting Questions or Research Questions
We, as a group, came about many rather interesting problems for discussion. The small bout of
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data we were given prompted many questions that we hope to find answers to throughout the
duration of this project. The first question we came across is as follows: What is the direct weight
and influence that the number of children as dependents cause on an individual's insurance plan?
Is there a linear relationship between the number of dependents and overall charges of a plan, or
is it much more complicated than this, potentially factoring in the other variables that have been
provided?

Another complicated intricacy that we formulated is how at different stages in life an individual
might be charged in relation to certain social standards for an individual at this point in life. An
example of this is that in the U.S., it is typical for a woman to get pregnant around ages 25-30.
Will insurance companies charge women around these ages more in anticipation of
pregnancy-related medical costs?

One more difficult question we came up with is related to the given BMIs of individuals. Not
everyone with a remarkably low or high BMI necessarily has related health issues, and so is there
a way to monitor the health problems directly related to BMI to prevent the extra charges from
being applied to individuals who do not have BMI-related health issues? Or do insurance
companies just charge across the board for having a drastically lower or higher BMI?
It is through the research and discussion of these rather interesting topics and questions that we,
as a group, hope to come to some conclusions on how medical insurance costs in the U.S. are
assessed, both for individual policyholders and for the specified groups of interest.

2. Exploratory Data Analysis

Our research began with looking at boxplots for the quantitative variables to look at their
distributions. Age is a quantitative variable which was measured in years. BMI is a quantitative
variable which is weight (kilograms) divided by square of height (meters). Children is a
categorical variable measured by the number of children. Charges is a quantitative variable
measured in dollars. Region is a categorical variable measured by 4 categories (southwest,
southeast, northwest, northeast). Sex is a categorical variable measured by 2 categories (male and
female). Smoker is a categorical variable measured by 2 categories (yes and no). The independent
variables are age, BMI, sex, smoker, region and children. Charges is a dependent variable.

The boxplot for the log transformation of BMI showed a slight right skew. We also saw some
potential outliers with high BMIs. The boxplot for age showed a symmetric distribution. There
was a bit of a right skew. The boxplot for charges showed a very strong right skew. There were
several outliers with very high charges, which could have been due to potential confounding
variables.

We then observed the scatterplots between dependent and independent variables.
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(Graph 1: LOESS Curve of log(charges) and log(BMI))

After performing a log transformation on both BMI and charges, which can be found in Graph 1,
there is improvement in variance consistency, with the variation in charges being similar
throughout the range of BMIs. The distinct subgroups in the data have largely disappeared,
although there is still no clear linear pattern. The outliers do not seem as significant with the
transformation.

(Graph 2: LOESS Curve of log(charges) and age)

Fitting a linear regression model between age and charges, which can be found in Graph 2,
displays an interesting pattern. We can see three separate linear patterns within this model. The
data could further be separated on another potential categorical variable (with different levels).
This is because it looks like there are three bands of data which each have a linear relationship
with the same slope 1 but different intercepts 0.

We believe this pattern may be related to individuals who are healthy, in moderate health, and
unhealthy with healthy having lower charges and unhealthy having higher charges. Using
smoking status as a marker for health, elementary evidence of this idea is presented and discussed
in further sections. There are some outliers with very high charges.
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(Graph 3: Scatterplot of log(charges) and sex) (Graph 4: Scatterplot of log(charges) and region)

Looking at the relationship between sex and charges in Graph 3, we can see that both male and
females have some outliers with very high charges; however, other than that, it seems like both
females and males have similar charges. There is not much of a pattern. However, in the
regression analysis later, it is discovered that males do generate, on average, higher charges than
females.

Looking at the relationship between region and charges in Graph 4, we can see that each region,
except southwest, has some potential outliers with high charges. Despite this, it seems as though
all the regions have similar charges on average. Regions northeast and northwest display a
constant scatter, whereas southwest and southeast have a “jump” - or lack of observed individuals
- having around $3000 of charges. Across the nominal region categories, there is not much of a
pattern.

(Graph 5: Scatterplot of log(charges) and smoker)   (Graph 6: LOESS Curve of log(charges) and children)

Looking at the relationship between smoker and charges in Graph 5 we can see that those who
smoke generally have higher charges than those who do not smoke. There are outliers in smokers
with very high charges whereas non-smokers do not have many outliers. There is an overlap in
charges where some smokers and nonsmokers have the same charge. This may be due to some
confounding variable. Non-smokers have a constant scatter whereas smokers have a jump around
$3000.

Looking at the relationship between children and charges in Graph 6 we see that there is a
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negative relationship between the two variables which conflicts with the given LOESS curve. We
can see some outliers where some individuals with children have higher charges. There are very
few individuals who have more than three children. This LOESS curve indicates that charges
increase around 2 and 3 children, almost in a bell or hill shape. This could be explained by the
nonconstant variance in the data, and by the fact that there are far many more data points for 0-3
children than there are for 4-5 children. For almost every number of children, there is a jump
around $3000.

3. Exploring Regression Relationship Using Simple Linear Regression Models

3.1. BMI and Medical Charges

Body mass index (BMI) is a simple benchmark used in determining if an individual is overweight
or obese. It is calculated by squaring the quotient of an individual’s weight, in kilograms, over
their height, in meters. The ideal BMI range is between 18.5 and 24.9, however, there are
disputing arguments to the validity of using BMI as an indicator for healthy weight [2], [3].

Transformations on both BMI and charges were most effective in resolving the nonconstant
variance in either variable. The table below shows a selection of the transformations attempted on
the data.

(Table 1: Transformation Attempts for BMI and charges)

Although the transformations above all produced very similar results, the natural log applied to
BMI and charges was deemed as the most suitable modification to linearize and correct the data.
The effect of this chosen transformation is shown and discussed below.
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(Graph 7: Residual Plot of log(charges) and log(BMI)) (Graph 8: Q-Q Plot of log(charges) and log(BMI))

The residual plot against the log transformed charges in Graph 7 shows that the transformation
made considerable improvements in removing any associations among the residuals and
stabilizing its variance. The residual plot is centered around zero and scattered in a mostly
random fashion. Compared to the raw data, this suits the assumptions of SLR much better.

The quantile-quantile plot (Q-Q plot) for the transformed data is represented in the graph to the
right. The log transformation of BMI improves the distribution of the residuals, showing a more
linear and symmetrical Q-Q plot. However, it is not completely ideal due the presence of short
tails. Possible contributing factors may be related to the sample size of the data (n=1338) or other
types of departures. While more investigation is needed, the new diagnostic plots provide
evidence to deem the transformation successful enough to continue with a SLR.

The new fitted model, , is much more𝑙𝑜𝑔(𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 6. 696732 + 0. 62632( 𝑙𝑜𝑔(𝐵𝑀𝐼))
appropriate. The p-value associated with t_bmi is <.0001, which therefore shows us that this log
transformation of BMI is in fact significant.

Making improvements to the nonconstant variance, nonlinearity, and nonnormality of the
observed residuals makes the model more robust. This is because nonconstant variance of the
error terms causes less efficient estimates of beta0 and beta1 and produces an invalid estimate of
sigma squared. The slope of the regression, 0.62632, represents the natural log of the average
expected increase in medical charges per one unit increase in the natural log of BMI. In other
words, shows the percent change in Y, which represents the BMI, while X, which represents theβ
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charges, increases by one percent.

3.2. Charges and Age

Age typically comes with health and financial changes, making it worth considering as an
explanatory variable for predicting medical charges.

Constructed from our data, the fitted linear regression model is

. The estimated intercept does not provide𝑙𝑜𝑔(𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 3165. 88501 + 257. 72262(𝑎𝑔𝑒)
useful information about charges from a newborn because the sample only considers adults ages
18 to 64.  The p-value associated with age is <.0001, which therefore shows us that this parameter
of age is in fact significant.
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As mentioned in earlier sections, there are three distinguishable subgroups all following the same
slope but starting at different intercepts. The fitted model fails to capture the observations in the
uppermost group, as most of those data points fall outside of the 95% prediction interval.The
validity of a SLR is challenged by the scatterplot of residuals against .Ŷ

(Graph 9: Residual Plot of log(charges) and age)

Graph 9 also represents this pattern that is seen in the original data, where there are three different
subgroups that follow the same slope given in the regression analysis. This further supports the
interesting linear relationship that is presented in the analysis of age versus charges. There are a
few outliers with very high charges that do not fall into any of these three subgroups, and so this
could be a deviation from our assumptions of the model.

Although the fitted model does not appear to capture all the data, we intend to further investigate
the three groups that make up the plot. Perhaps there lies strong relationships between such
subgroups and charges, however, the presence of such groups is obstructed by transformations.

3.3. Medical Charges and Categorical Variables

3.3.1. Medical Charges and Sex

In the dataset, sex is described as a binary of male or female. The following regression is
generated using the indicator variable “isMale” having two possible values, 0 and 1. An isMale
value of 0 represents female individuals and a value of 1 are male individuals.

We have that , given for a𝑙𝑜𝑔(𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 12570 + 1387. 17233(𝑖𝑠𝑀𝑎𝑙𝑒) 𝑋 = 0
female and for a male. represents the average expected cost for females, whereas𝑋 = 1 𝑏

0
𝑏

1

represents that, on average, males are charged $1387.17 more than females. The p-value
associated with isMale is <.0361, which therefore shows us that this binary for sex might not be
significant significant.

The intercept represents the reference group which is age=female. The estimated intercept is the
expected charges for the female group. The isMale parameter represents the expected difference
in expected charges going from the female to male group. Here, the p-value is statistically
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significant for the alpha test of 0.05 so this may be a good categorical variable to include in our
final regression mode.

3.3.2. Medical Charges and Region

Information from individuals in the dataset also included the region of the US in which they
lived, described as northeast, northwest, southeast, or southwest. Across such broad geographic
areas, there are known political, economic, social, and other differences which may or may not be
apparent in medical charges. The following 4 SLR models seek to observe any possible
associations between living in any one of the 4 regions or living outside that given region.

Our fitted model here is

. The𝑙𝑜𝑔(𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 12347 + 1059. 44717(𝑁𝐸) + 70. 63800(𝑁𝑊) + 2388. 47406(𝑆𝐸)
intercept represents the effect of the reference group southwest (SW) on expected charges. Theβ

0

parameter estimates for each region (NE, NW, SE) are the changes in expected charges for each
region compared to the reference region SW. The p-values are relatively high for NE and NW
indicating they do not have a statistically significant effect on the expected charges when going
from the reference region (SW) to those regions. However, the region SE appears to have a
p-value of 0.0097 which can be considered statistically significant based on alpha=0.05, and
therefore there is a statistically significant effect on going from region SW to SE regarding the
expected charges.

3.3.3. Medical Charges and Smoker

Smoking is a known risk factor for many chronic and life-threatening diseases. The harm
smoking causes to human health is also reflected in the cost of care associated with managing
such health implications [4]. The model below seeks to quantify and predict the average medical
costs using smoking as a predictive independent variable.

The fitted model is , given for a𝑙𝑜𝑔(𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 8434. 26830 + 23616(𝑦𝑒𝑠
−

𝑠𝑚𝑜𝑘𝑒𝑟) 𝑋 = 0

non-smoker and for a smoker. represents the average expected cost for non-smokers,𝑋 = 1 𝑏
0

whereas represents that, on average, smokers are charged $23616 more than non-smoker.𝑏
1

The p-value for the effect of being a smoker compared to a non-smoker is <.0001. Therefore, this
indicates that this categorical variable is a good use in our final regression model due to its
statistical significance.

3.3.4. Medical Chargers and Children

The charges sent towards the insurance company not only stems from the individual patient, but
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also any dependents covered in their plan. The sampled individuals had between zero and five
children. It is natural to assume that the more children in a covered plan, the more charges would
be accrued by the plan. The regression below uses evidence from the data to investigate this idea.

The fitted model is as follows:

𝑙𝑜𝑔(𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 12366 − 365. 19623(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
−

1) + 2707. 58813(𝑐ℎ𝑖𝑑𝑟𝑒𝑛
−

2)

+ 2989. 34277(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 3) + 1484. 68071(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
−

4) − 3579. 94035(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
−

5),

where is having no children, and this same logic holds up until having 5 children. The𝑋 = 0
p-values associated with three of the dependent parameters, those being children 1, 4-5, are large
numbers, which therefore shows us that this parameter of children might not be significant.
Children 2-3 could possibly be significant, as their p-values are smaller numbers, .0035 and .0060
respectively. However, we will come to the conclusion later on that the parameter of children does
not have any significance in this model.

4. Multiple Linear Regression Analysis

4.1. Grouped Scatter Plots - Newfound Associations with Grouped Variables

When grouped with certain categorical variables, many clear relationships can be seen when
distinguished over the quantitative independent variables age and BMI. Scatterplots that were
previously messy and hard to interpret suddenly showed very interesting relationships. The results
from the following groupings open many new questions and areas to explore that may potentially
expand our understanding of the nuances around medical charges and the broader strategies of
health insurance financings.

(Graph 10: Scatterplot of charges and BMI Colored by smoker) (Graph 11: Scatterplot of log(charges) and
log(BMI) Colored by smoker)

A clear example of such patterns can be seen when the binary smoker category is grouped within
the scatterplots of BMI and charges; both untransformed (Graph 10) and both transformed (Graph
11). Previously mentioned in the model using untransformed BMI, there were two vaguely
identifiable trends seen within the scatterplot; one staying flat and close to zero, and the other in a
somewhat-straight line that increases in a positive direction. When smokers (colored in blue) and
non-smokers (colored in red) are identified, these trends strikingly stand out.
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From the data, it can be said that non-smokers tend to generate consistent charges - mostly
between $0 and $20000 - regardless of their BMI. Considering only non-smokers, there is little
graphical evidence to support a linear relationship between BMI and charges. The same cannot be
said for smokers. On the contrary, smokers with higher BMIs tend to generate higher charges than
smokers with lower BMIs. As BMI increases among smokers, charges are seen to increase as
well. Looking at the transformed scatterplot, the positive association between smokers’ BMI and
charges is remarkably consistent as well: the variance among smokers is tight, further supporting
the relationship. On the same plot, the variance among non-smokers is high and randomly
scattered, supporting the idea that BMI is not an important indicator of charges for non-smokers.

Data regarding the variables of age and smokers can also be investigated, as when put into a
comparison by scatterplot, there is an alarmingly distinct relationship between these two variables
that assist us in making further assumptions about our model.

(Graph 12: Scatterplot of log(charges) and age Colored by smoker)

As given in Graph 12, there is a clear correlation between the variables of age and
smokers, which follows our interesting discovery of the three subcategories within age displayed
within the scatterplot. The increase in charges is consistent with the increase in age, regardless of
smoking status. However, those of low age, who have relatively lower charges than those of
higher age, among smokers are charged, on average, much higher than nonsmokers of this same
age. There is an overlap in the charges of smokers and nonsmokers that lies within the middle of
the data, where the highest charged young nonsmokers begin to match the charges of the lowest
charged middle-aged smokers. This further supports our findings that, when comparing age and
smoker status together against charges, that there is a clear relationship between smoker status
and charges on a plan.

4.2. Base Model

With the discovery of these newfound relationships between some of our quantitative and
qualitative variables through the grouped scatter plots above, we are now able to begin to
formulate our multiple linear regression models, and this begins with the construction of our base
model.
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Our base model that we chose is represented by
. We𝑌 = 𝑏

0
+ 𝑏

1
(𝑎𝑔𝑒) + 𝑏

2
(𝑙𝑜𝑔(𝐵𝑀𝐼)) + 𝑏

3
(𝑠𝑚𝑜𝑘𝑒𝑟) + 𝑏

4
(𝑙𝑜𝑔(𝐵𝑀𝐼) * 𝑠𝑚𝑜𝑘𝑒𝑟) + ε

chose this model in an attempt to further follow our instincts that log(BMI) and smoker are
heavily related, which is one of the correlations that we found in our grouped scatter plots. Thus,
we created the new variable of log(BMI)*smoker, which represents the interaction of these two
variables.

From our data, we cannot conclude any results, as our assumptions of an MLR model are not met,
as we can observe through our findings below.

(Graph 13: Q-Q Plot of the Base Model)

As we can see from the Q-Q plot displayed in Graph 13 is not a straight line, therefore we can
conclude that the MLR is not normally distributed and the assumptions for MLR are not met.

(Graph 14: Individual Residual Plots of the Base Model)

There are clear patterns for age and log(BMI) in Graph 14. They are not symmetrically
distributed as age has much more points on the positive side compared to the negative side and
log(BMI) is heavily concentrated in the middle. The others are insignificant as they are qualitative
predictors.
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(Graph 15: Residual Plot of log(charges) and log(BMI)*smoker)

The residual of log(BMI)*smoker represented in Graph 15 shows us that our interaction variable
between log(BMI) and smoker clearly has some sort of relationship that needs to be investigated,
as this residual violates our assumptions of the regression model very distinctly.

4.3. Exploratory Models

Model
Numbers

Model

2 Base + log(BMI)*sex, sex

3 Base + log(BMI)*region, region

4 Base + log(BMI)*children, children

6 Base + age*sex, sex

7 Base + age*region, region

8 Base + age*children, children

(Table 2: Attempted Exploratory Models)

All of the models attempted in Table 2 did not result in any significant conclusions. All of the
residual plots and Q-Q plots for each model had the same or similar patterns compared to each
other. Graph 16 represents what each model’s residuals look like and Graph 17 represents what
each model’s Q-Q plots look like.. None of the assumptions of the models were met, so we cannot
draw any conclusions from them.
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(Graph 16: Residual Plot for Models 2-4, 6-8) (Graph 17: Q-Q Plot for Models 2-4. 6-8)

4.4. Model 1

Model 1 is represented by
𝑌 = 𝑏

0
+ 𝑏

1
(𝑎𝑔𝑒) + 𝑏

2
(𝑙𝑜𝑔(𝐵𝑀𝐼)) + 𝑏

3
(𝑠𝑚𝑜𝑘𝑒𝑟) + 𝑏

4
(𝑙𝑜𝑔(𝐵𝑀𝐼) * 𝑠𝑚𝑜𝑘𝑒𝑟 + 𝑏

5
(𝑠𝑒𝑥)

. We want to test if sex, region, and children are significant.+ 𝑏
6
(𝑟𝑒𝑔𝑖𝑜𝑛) + 𝑏

7
(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) + ε

Note that this Model 1 is just the Base Model with the additional parameters of sex, region, and
children.

From our data, we cannot conclude any results, as our assumptions of an MLR model are not met,
as we can observe through our findings below.

(Graph 18: Residual Plot of log(charges) and age Colored by smoker)

Referring back to our preliminary findings in 4.1, we know that there is some sort of relationship
between smoker and age, and so we decided to color the residuals of age and log(charges) against
smoker status in order to try and differentiate some new patterns, which is shown in Graph 18.
Using Model 1 gives us the most extensive set of data, as there are the most regression
coefficients included, and so using this Model we are able to see that there is some sort of pattern
regarding age and smoker, and so this shall be noted and invested further, specifically in Model 5.
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4.5. Model 5

Model 5 is represented by
𝑌 = 𝑏

0
+ 𝑏

1
(𝑎𝑔𝑒) + 𝑏

2
(𝑙𝑜𝑔(𝐵𝑀𝐼)) + 𝑏

3
(𝑠𝑚𝑜𝑘𝑒𝑟) + 𝑏

4
(𝑙𝑜𝑔(𝐵𝑀𝐼) * 𝑠𝑚𝑜𝑘𝑒𝑟) + 𝑏

5
(𝑎𝑔𝑒 * 𝑠𝑚𝑜𝑘𝑒𝑟) + ε

, which can be viewed alternatively as the Base Model with the addition of the interaction effect
between age and smoker. Looking at Graph 19 we can see that there is some variance in the
residuals, compared to previous models, as there is a little more of a spread. When we also look at
Graph 20, we can also see a little more deviation around quantile = -2, and it looks less normally
distributed. However, when we looked at Graph 21, we see that age*smoker is more spread out
around 0 towards yes_smoker. Log(BMI)*smoker presented a new pattern around yes _smoker
and there are two parallel residual patterns. This was an interesting relationship that we chose to
explore further.

(Graph 19: Residual Plot of Model 5) (Graph 20: Q-Q Plot of Model 5) (Graph 21: Individual
Residual Plots of Model 5)

4.6. Model 5.5

Since we have noted that Model 5 deviates the most from the other exploratory models, we
choose this model to investigate our data. Noting that there is a new interesting pattern in the
scatterplot between log(BMI)*smoker in Model 5, we need to find a new way to dissect this
pattern. One way that we formulated was to create a new binary for log(BMI) that involves the
mean for log(BMI), where 1 represents when log(BMI) is above or equal to this mean, and 0
represents when log(BMI) is below this mean. We named this new binary variable “fat”, and this
mean is 3.40295.

Using this new fat variable in coloring some of our Model 5 graphs, there is much to be noted
regarding the fact that this fat explained the model’s variation almost perfectly. The residual plot
of age against log(charges) colored by fat, which is Graph 20, explains Graph 18 in a much better
light using this new variable of fat. The residuals are much more focused around the 0 axis and
there is less of a pattern than in Graph 18.
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(Graph 22: Residual Plot of Model 5 Colored by fat)

Next, we colored the residual plot of age*smoker and log(charges) with the fat variable in Graph
22 and this showed a significant pattern. This new pattern displays the same pattern that the
residual of log(BMI)*smoker and log(charges) from Graph 21 does, but in a much clearer
manner, and it clearly displays that the fat variable was responsible for causing this pattern. Those
with a fat level below the average log(BMI) consistently are grouped together in terms of charges
and age when they are an active smoker, and the same can be said for those with a fat level above
the average log(BMI).

(Graph 23: Residual Plot of log(charges) and age*smoker Colored by fat)

Going even further, we made a new variable called fatSmoker, which is just our binary fat
variable multiplied by our binary smoker variable. Graph 24 displays the residual plot of age and
log(charges) colored by this new fatSmoker variable, and the results are telling. This new graph,
when comparing it to Graphs 18 and 22, displays that these patterns that we have seen in these
two graphs can be explained even further by fatSmoker. When fatSmoker is equal to 1, the
residuals for age stay grouped in a downward sloping linear pattern. On the other hand, when
fatSmoker is equal to 0, the residuals for age are much more scattered and random, however there
is a slight upward pattern hovering around zero. This new residual is much more randomly
scattered and follows the assumptions of a multiple linear regression model. Thus, Model 5.5 is
our most accurate model and we would like to explore this model further.
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(Graph 24: Residual Plot of log(charges) and age Colored by fatSmoker)

4.7. Continuation of Model 5.5

With our new fat and fatSmoker variables, the question now becomes: How can we fit Model 5.5
to accommodate these new findings?
We have Model 5.5, which we know is represented as
𝑌 = 𝑏

0
+ 𝑏

1
(𝑎𝑔𝑒) + 𝑏

2
(𝑙𝑜𝑔(𝐵𝑀𝐼)) + 𝑏

3
(𝑠𝑚𝑜𝑘𝑒𝑟) + 𝑏

4
(𝑙𝑜𝑔(𝐵𝑀𝐼) * 𝑠𝑚𝑜𝑘𝑒𝑟) + 𝑏

5
(𝑎𝑔𝑒 * 𝑠𝑚𝑜𝑘𝑒𝑟) + ε

, which is Model 5, plus this new factor of fat. We need to find a way to incorporate fat or
fatSmoker into Model 5 in order to form our final Model 5.5.
There are a few ways in which this is attempted.

Model
Numbers

Model

5.5.1 Model 5 + fat

5.5.2 Age + log(BMI) + smoker  + fat +
fatSmoker + age*smoker

5.5.3 Model 5 + fat + fatSmoker

5.5.4 Age + log(BMI) + smoker + fatSmoker +
age*smoker

(Table 3: Attempted Continuations of Model 5)

After attempting the models in Table 3, we came to the conclusion that Model 5.5.2 is the most
adequate model that we can draw conclusions from. Model 5.5.4 is also adequate, as it also has
low VIF values, however, it is the same model as 5.5.2 just without the fat variable, so we chose
to look more at Model 5.5.2 because it has the added benefit of an extra variable. The VIF values
are all below 10, and so they demonstrate no multicollinearity between the different predictors
that we looked at.  However, this is not a strong enough indication that the MLR assumptions are
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met. The residual plots for Model 5.5.2 are still displaying patterns, almost more than the original
Model 5 did. This can be seen in Graphs 25 and 26.

(Graph 25: Residual Plot of Model 5.5.2) (Graph 26: Q-Q Plot of Model 5.5.2)

Thus, our conclusion is that although we attempted numerous models, it was difficult to find one
particular model that perfectly framed our data to fit an MLR. Therefore, further exploration of
this data within Model 5.5 is necessary to find a significant model to draw conclusions.

5. Goals and Conclusions

5.1. Determine how much weight each field has on individual charges.

We found through our data analysis that age, log(BMI), and smoker were significant in
determining medical cost charges. Region, children, and sex were insignicant in doing so.

5.2. Find correlations between variables.

Age and smoker in relation to log(charges) were correlated. Log(BMI) and smoker in
relation to log(charges) were also correlated. This was demonstrated through interaction
effects during our model analysis.

5.3. Direct weight and influence that the number of children as dependents cause on an
individual’s insurance plan.

We found that the number of children was insignificant in relation to medical charges so
we are unable to draw any conclusions about its influence on insurance plans.

5.4. Is there a linear relationship between number of dependents and overall charge?

Based on a LOESS curve from earlier in the paper, there was no linear relationship
between dependents and overall charges. Additionally, when we looked at p-values we
found no significance between number of dependents and log(charges).
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5.5. Do charges change at different age stages in life due to certain social standards?

Early in our analysis, we observed an interesting relationship in a scatter plot between age
and log(charges). We found three different linear patterns which we hypothesize may
have something to do with different age groups such as “young,” “middle aged,” and
“old.” This is something that would require further analysis.

6. Individual Part

6.1. Limitations of the Data and the Models/Statistical Techniques

When we first received this dataset, we wanted to approach the data from a social angle
and understand the medical-industrial complex and how it impacts certain individuals.
One of our biggest goals was to understand how insurance charges change at different age
stages in life. For example, do women get charged higher when they are at the age of
most likely getting pregnant? We were able to produce a scatter plot of log(charges) vs.
age. We hypothesized that the three linear patterns shown in the graph had something to
do with different age groups; however, we did not have the statistical techniques to
investigate the patterns further. In reality, insurance companies are not allowed to
increase your premium due to sex or health condition (including pregnancy), so it would
have been interesting to prove or disprove this using statistical models. We attempted
multiple different MLR models to try to address questions such as this one, but came out
shorthanded each time. No model is perfect and we did find some interesting models, but
nothing answered our questions. It is possible that in order to address these questions, we
still have to learn more statistical skills. It is also likely that the data does not allow for a
perfect or ideal model since it is real data and we cannot shape it to perfectly fit our
needs.

6.2. Improvements I Would Make

I would have liked to interrogate the findings of the scatterplot mentioned above more.
Like I said, insurance companies are not allowed to increase premiums due to sex or
health condition. I would have liked to prove or disprove this idea with the data; however,
we did not have enough data or statistical skills to go more in depth. The models we
created told us nothing significant to answer this question. I would have liked to create
more models revolving age, sex, and charges to see if we missed something from our
earlier attempts. Perhaps, it would have been worth searching online for more related data
so we could create a better model.

I also think we did not stick to our goals. We lost sight of what we had set out to do at the
beginning of the project and started working on many different models just to see what
we could find and just to find one working model. I think this was a fun approach
because we had the opportunity to try different things, but I think if we had structured our
project around our goals we would have possibly had a better outcome.
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6.3. What Did I Learn?

This project taught me that data is messy. Especially real world data. No data is perfect
and it will never perfectly fit the model or idea that you are trying to work on because
there will always be limitations. This means that there will also never be a perfect answer.
We were unable to properly answer any of our original questions, which is okay. In my
opinion, the purpose of this data analysis was to teach us that sometimes we start out with
one idea and at the end the project just ends up being something completely different.

This project also taught me how to work with a group. Working with a group has benefits
and drawbacks but it taught me how to compromise and communicate in order to come
up with an end product. I am planning on working for an insurance company once I
graduate and I know that there is a lot of group work and collaboration and I feel much
more comfortable for that after this project.

Finally, I was able to learn a new technical skill. I had worked in SAS a little during an
internship, but I had a GUI doing most of the work for me. This time, I was actually able
to learn how to code and apply statistical analysis through SAS. I know my post-graduate
job requires knowledge of SAS and I am glad that I will be able to point to this project to
show my experience in it.

7. Peer Assessment

7.1. Molly

Molly conducted much of the preliminary SLR investigations through SAS and
interpreted them. Molly also did a lot of the interpretations of the MLR models while
assisting Levon with the SAS code. Molly wrote a good amount of each of the reports
and investigated our final models including the continuation of Model 5.5 and our
conclusions. Molly also helped create the powerpoint for our presentation.

7.2. Richa

Richa conducted much of the preliminary SLR investigations through SAS and
interpreted them. Richa also did a lot of the interpretations of the MLR models while
assisting Levon with the SAS code. Richa wrote a good amount of each of the reports and
helped determine conclusions.

7.3. Levon

Levon handled the SAS code, especially for the MLRs. He constructed the MLR models
and contributed to the SLR investigations. He wrote a good amount of each report, but he
was very much involved with the SAS code.

19



7.4. Nihal

Nihal investigated MLR model 1 and 1.5 on her own. She missed opportunities to
participate, but became involved in the MLR models and read over the report to catch up.

7.5. Jai

Jai missed opportunities to participate in the project, but became involved towards the
end a little. He assisted with some of the SLR models early on and with the Base MLR
model towards the end.

8. Resources

8.1. [1]
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Report
s/NationalHealthExpendData/NationalHealthAccountsHistorical#:~:text=U.S.%20health
%20care%20spending%20grew,spending%20accounted%20for%2017.7%20percent.

8.2. [2]: Kok P, Seidell JC, Meinders AE. De waarde en de beperkingen van de 'body mass
index' (BMI) voor het bepalen van het gezondheidsrisico van overgewicht en obesitas
[The value and limitations of the body mass index (BMI) in the assessment of the health
risks of overweight and obesity]. Ned Tijdschr Geneeskd. 2004 Nov 27;148(48):2379-82.
Dutch. PMID: 15615272.

8.3. [3]: Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass
index to detect obesity and predict body composition. Nutrition. 2001 Jan;17(1):26-30.
doi: 10.1016/s0899-9007(00)00471-8. PMID: 11165884.

8.4. [4]: Hall, Wayne, and Chris Doran. “How Much Can the USA Reduce Health Care Costs
by Reducing Smoking?.” PLoS medicine vol. 13,5 e1002021. 10 May. 2016,
doi:10.1371/journal.pmed.1002021

20

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.7%20percent
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.7%20percent
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.7%20percent
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical#:~:text=U.S.%20health%20care%20spending%20grew,spending%20accounted%20for%2017.7%20percent

