
MOVIE RECOMMENDATION USING SINGULAR VALUE DECOMPOSITION

BRIAN, DARSH, MAGGIE, RICHA, SHUBHAM

Abstract. The aim of this project is to compare two methods for a recommendation system that predicts user movie ratings

based on existing user data. The dataset used was very sparse, so this paper focuses on comparing two different methods that

eliminate the sparsity and evaluate their accuracy of predicting movie ratings. Method 1 is to replace null values with average

movie ratings and performing Singular Value Decomposition (SVD) on a subset of the large overall dataset. Method 2 is to

utilize Stochastic Gradient Descent (SGD) to replace null values and then perform SVD on the entire dataset. We selected a

group of ten ratings to replace with null and use as a set of data to compare each methods’ accuracy. Our objective is to reduce

sparsity and find the best method for prediction. We found that Method 1 predictions were farther from the actual ratings, but

not too far off. Method 2 predictions were closer to the actual ratings more often, but when they were wrong, they were wrong

by a lot.

1. Introduction. We want to recommend a movie to a user, or know whether a user will like a certain

movie, based on how they have rated previous movies. In our data set, (Movie, user) ratings can be represented

by points in a matrix where the rows are the users, columns are the movies and ratings are the values.

However, much of this matrix is sparse, because not all users have rated every movie. Therefore, we need

to find way to predict values of missing data points, to predict how a specific user might rate that specific

movie.

To do this prediction, we will use Singular Value Decomposition(SVD). SVD is a common method of

Matrix factorization for recommendation systems. The model finds an association between the users and

movies based on past ratings. Then it predicts the rating for the movie in which the user may be interested.

Since we are using the same procedure, we will be comparing the different ways of reducing the matrix

to a dense form in order to perform SVD to find the predicted values. Once such way to deal with this is

with Stochastic Gradient Descent.

Stochastic Gradient Descent is an iterative method that optimizes learning parameters, sparse matrix,

in order to find the best fit between the prediction and the actual data. In other words, SGD is used to

convert numeric observations into predictive features which is why it is a very popular method used in any

and all kinds of machine learning models.

Hypothesis. Performing Singular Value Decomposition (SVD) on a full dataset is beneficial for the

accuracy of ratings of users on movies, in comparison to replacing null values with the movie’s average rating

and then performing SVD on a subset of movies.

2. Methods. As our aim is to compare the accuracy of our methods to predict ratings, we will need

actual ratings to verify accuracy. To properly evaluate our methods, we will remove 10 points from the

matrix, and replace them with null values. In the context of this problem, we are pretending that 10 users

1



2 BRIAN, DARSH, MAGGIE, RICHA, SHUBHAM

each did not rate one of the movies they did rate. Then we will use each separate method to replace the null

values, perform SVD on each matrix, and compare which method predicted these 10 ratings more accurately,

comparing the predictions to the actual ratings we had previously extracted.

2.1. Method 1. In the first method, we began by decreasing our sample size. We chose to reduce the

matrix of ratings to only include the 100 movies with the most ratings, not necessarily the best ratings.

Fig. 1: The 10 extracted (User, Movie) Ratings

Next, we removed the following 10 ratings from the matrix, and replaced them with NaN. We took these

points out so that we could later compare them to what the formula would predict for them.

Fig. 2: Selecting 100 most rated movies

Lastly, to prepare the matrix for SVD, we replaced all null values in the matrix with the average of that

movie’s existing ratings. We did this because we assumed that a movie’s likability is probably somewhat

consistent. If a movie is bad, most users will rate it poorly, and if a movie is generally good, most users will

rate it well. However, we acknowledge that this is a naive approach to filling in null values, because some



MOVIE RECOMMENDATION 3

users may not like a really good movie, and predicting the movie’s high average rating for that user may not

be an accurate approach.

After preparing our matrix by removing our 10 focus points and eliminating all null values, we performed

Singular Value Decomposition on the matrix.

Singular Value Decomposition is a ”popular method in linear algebra for matrix factorization in machine

learning” and is used to reduce the space dimension of a large matrix[1]. It uses the principle of collaborative

filtering. In collaborative filtering, the model assumes that movies that have been liked in the past will

continue to be liked by others, and that users who liked certain movies in the past will like similar movies

in the future. ”The model finds an association between the users and the items”, and then predicts how a

user may rate a similar item[4].

Singular Value Decomposition decomposes the matrix, A of ratings into 3 matrices, U , S, and V T ,

where A = USV T . U is an ”mxn matrix of the orthonormal eigenvectors of AAT ”[2], and it represents the

relationship between users and latent factors[4]. S is a ”diagonal matrix of the singular values which are

the square roots of the eigenvalues of ATA[2], and it represents the strength of each latent factor[4]. V T is

the ”transpose of a nxn matrix containing the orthonormal eigenvectors of ATA”[2], which represents the

similarity between items and latent factors[4].

With this decomposition, we can compute the dot product of the matrices, using only the diagonal values

from S, to compute a reconstructed prediction matrix.



4 BRIAN, DARSH, MAGGIE, RICHA, SHUBHAM

Fig. 3: The recomposed matrix from SVD

2.2. Method 2. Utilize Stochastic Gradient Descent (SGD) to replace the null values and then SVD

on the full matrix.

For the second method, we applied Stochastic Gradient Descent (SGD) to the entire data set in order

to retrieve the predicted values for the user item matrix. SGD is an iterative method to optimize a loss

function[3]. It approximates the true gradient of the function with a randomized sub sample of the gradients.

In our problem, the gradients that we are estimating are the vectors U and V T . Like SVD, we are first finding

the dot product of the U matrix and the V T , but the main difference is that the latent factors U and V T

matrices are randomly initialized, instead of them being in the S matrix in regular SVD. The error of this

dot product is then minimized using Stochastic gradient descent and the vectors are updated. The gradient

descent is done by selecting randomized points in each iteration to ensure faster computational complexity

at the cost of a lower convergence rate.

With each iteration of SGD the error between the prediction and the actual matrix is reduced resulting

in a step towards the optimal solution of the prediction. The optimal solution of prediction is when the

initial matrix values have little or no difference between the prediction matrix values, only considering the

non-zero values in the initial matrix. The formula for SGD is as follows[3]:



MOVIE RECOMMENDATION 5

Wi+1 = Wi + lr ∗ ∂Loss

∂W

Wi+1 = Current pred,Wi = Previous pred, Loss = RMSE(Input matrix, Pred), lr = 0.001

This equation is linearly reducing the error with every iteration. ’lr’ is the learning rate i.e. the size of

step on the x-axis. RMSE is the root mean squared error. As SGD progresses the error exponentially reduces

until it is very close to 0, which is good enough to make a valid prediction.

2.2.1. Implementation.

We use Pandas pivot method to create index/column data frame and fill the missing play counts with 0.

Fig. 4: Dataset filled with 0 and converted to np.array

Defining train test split: We have used a custom train test split function to get the training and

validation set to evaluate our model. We remove the existing movie ratings from the dataset by replacing

them with zero and adding the same to our validation set. The MIN USER RATINGS variable is used to

select the users we will be considering to split our data on, and the DELETE USER RATINGS variable is

used to select the size of validation values we will be extracting from each row(user) selected.

Fig. 5: Train Test Split Function



6 BRIAN, DARSH, MAGGIE, RICHA, SHUBHAM

Training We start by creating 2 matrices for the latent features of the users and ratings. For each user,

item pair, we calculate the error (note we use a simple difference of the existing and predicted ratings). We

then update P and Q using Gradient Descent. As we discussed earlier, we obtain predictions by taking the

dot product of the transposed P matrix with Q. After each training epoch, we calculate the training and

validation errors and store their values to analyze later.

Fig. 6: SGD Implementation

Evaluation: As, we are predicting the value for multiple movies, it becomes a multi-class evaluation

and Root Mean Square error is the easiest way to evaluate our results.



MOVIE RECOMMENDATION 7

Fig. 7: Evaluation Function using RMSE

Fig. 8: Evaluation of our Model using test and validation

Observations: The main problem with SGD and the gradient descent process in general is the learning

rate parameter. Setting the learning rate too high can result in over fitting or having the algorithm diverge.

Setting it too low can slow down the convergence rate[5]. A solution to this is to add a decayed learning

rate function, where the algorithm is trained with a large learning rate in the first iterations and the later

ones will just slightly optimize the learning rate. During our implementation, we observed that a polynomial

learning rate is more efficient and reaches the minima sooner than an exponential one (200 epochs), which

didn’t reach the minima even after 1000 epochs.

In addition to that, there are certain limitations observed while trying to find the best loss function

which cannot be forgotten about while implementing SGD. To perform SGD, a loss function, in this case

RMSE, needs to be differentiable. If it is not differentiable, SGD will not be able progress toward the optimal

solution. At the point of non-linearity, the derivative of loss would evaluate to infinity or 0, which would

break SGD.

3. Results.

3.1. Method 1. Let us take a look at the 10 predicted ratings using method 1 to see how close the

predictions are:



8 BRIAN, DARSH, MAGGIE, RICHA, SHUBHAM

Fig. 9: The 10 Predicted Ratings

After looking at these predictions, we can notice a few things. First, we can see that the predicted rating

is not too far off from the actual rating. In fact, the Root Mean-Squared Error is 0.75108, which is not very

large. Second of all, however, we can see that the predicted ratings are extremely similar to the average

ratings of their respective movies. This leads us to believe that our naive approach in replacing nulls with

movie averages may have caused a large bias in the predictions from our model. The model’s predictions

appear to be heavily influenced by the averages, which as we discussed before, are not always an accurate

reflection of how a specific user might rate that movie.

3.2. Method 2. The results for method 2 were quite promising. After training through the entire data

for several hundred epochs, we were able to get the error between prediction and actual values down to

±0.85. This error could have been smaller had we used a polynomial learning rate which would dynamically

check multiple local minimas and reach a global minima or a get the least error of them all. However, this

was not possible as it requires a lot more processing power to perform SGD with varying learning rate.

Fig. 10: The 10 Predicted Ratings after SGD



MOVIE RECOMMENDATION 9

According to figure 10, we observe that even though the predicted values are not exactly the same they

are very similar to the actual values with ±0.6 deviation for most of them. When the values are deviating

more than the ±0.6, they are far off by a lot. This makes them the outliers. Since 30% of the outputs are

such points in the 10 ratings we are evaluating, we can say that the local minimum or the optimal solution

was not reached. However, we got pretty close to the optimal solution where all predicted values would have

been very close to the actual ratings of the movies.

The results reveal that the hyperparameters such as the random guess, whether learning rate is so large

that it misses the local minima or so small that it never reaches the local minima, play a huge role in finding

the local minima of the loss function. In this case, SGD successfully produced a prediction with low error by

learned about what users will like based on each users’ past ratings but was still further away from a lot of

the actual ratings.

3.3. Comparison. Now, let’s compare the predictions from each method on our 10 focus points. In

the figure below, green represents the prediction that was closer to the actual rating.

Fig. 11: Predicted Ratings from Both Methods

Method 1 was closer 4 out of 10 times, and had an RMSE of 0.75108. Method 2 was closer 6 out of 10

times, and had an RMSE of 0.85915. While Method 2 predicted closer to the actual rating more of the time,

Method 1 has a smaller RMSE. Here, we can conclude that although Method 2 was farther less of the time,

but when it is wrong, it is very wrong. On the other hand, when method 1 was farther from the actual rating

than method 2, it was not too far off.

4. Summary. After attempting both methods on the matrix, we find it important to first note that

method 1 only used the 100 most rated movies, whereas method 2 looked at the entire dataset. With that

being said, through this comparison, we when we tried Method 1: Replacing Nulls with Average Ratings, the

predicted ratings were heavily influenced by the average ratings, but were not too far off from the actual

ratings.

When we tried Method 2: Using SGD to Replace Nulls, we found that this method has predictions closer



10 BRIAN, DARSH, MAGGIE, RICHA, SHUBHAM

to the actual values more of the time; however, when it is wrong, it is wrong by a lot. The added value of

an entire dataset and the intricacy of Stochastic Gradient Descent seems to minimal and, in fact, leads to

poorer generalization overall. There are two possible explanations for this: either the size of the dataset is

too large or the method of using SGD to replace null values is not a proper method.

This leads us to ask an important question: do we really need massive data analysis methods or is it

better to just pick a subset of movies to look at? There is a lot of exploration that can be done further to

understand these two methods; for example, we could look at more than ten points to evaluate accuracy, we

can attempt SGD on a subset of a large matrix, and we can look at other statistical techniques.

REFERENCES

[1] Singular value decomposition (svd). https://towardsdatascience.com/recommender-system-singular-value-decomposition-

svd-truncated-svd-97096338f361. Accessed: 2022-05-02.

[2] Singular value decomposition (svd). https://www.geeksforgeeks.org/singular-value-decomposition-svd/. Accessed: 2022-

05-02.

[3] N. Hug, Understanding matrix factorization for recommendation (part 3) - svd for recommendation. http://nicolas-

hug.com/blog/matrix facto 3. Accessed: 2022-05-03.

[4] D. V. Kumar, Singular value decomposition (svd) its application in recommender system. https://analyticsindiamag.com/

singular-value-decomposition-svd-application-recommender-system/. Accessed: 2022-05-02.

[5] J. Zhang, Stochastic gradient descent momentum explanation. https://towardsdatascience.com/stochastic-gradient-

descent-momentum-explanation-8548a1cd264e. Accessed: 2022-05-03.

https://towardsdatascience.com/recommender-system-singular-value-decomposition-svd-truncated-svd-97096338f361
https://towardsdatascience.com/recommender-system-singular-value-decomposition-svd-truncated-svd-97096338f361
https://www.geeksforgeeks.org/singular-value-decomposition-svd/
http://nicolas-hug.com/blog/matrix_facto_3
http://nicolas-hug.com/blog/matrix_facto_3
https://analyticsindiamag.com/singular-value-decomposition-svd-application-recommender-system/
https://analyticsindiamag.com/singular-value-decomposition-svd-application-recommender-system/
https://towardsdatascience.com/stochastic-gradient-descent-momentum-explanation-8548a1cd264e
https://towardsdatascience.com/stochastic-gradient-descent-momentum-explanation-8548a1cd264e

	Introduction
	Methods
	Method 1
	Method 2
	Implementation


	Results
	Method 1
	Method 2
	Comparison

	Summary
	References

